Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor.
نویسندگان
چکیده
Although the presence of subepithelial intestinal fibroblasts has been well recognized, the effects of fibroblasts on intestinal epithelial cell (IEC) growth are incompletely understood. In vitro studies were undertaken to evaluate the effects of fibroblasts on the proliferation of model IEC lines. IECs (Caco-2, T84, and IEC-6) were grown alone or in the presence of human intestinal (CCD-18), lung (CCD-37), or skin explant-derived fibroblasts. Cocultures were carried out directly on irradiated fibroblasts or by Transwell coculture technique with fibroblasts and epithelial cells separated by a porous filter. Cell proliferation was assessed by [3H]thymidine incorporation and cell counts. Hepatocyte growth factor (HGF) and c- met transcript expression in IECs and fibroblasts was examined by RT-PCR and Northern blotting; protein expression was evaluated by immunoblotting. Intestinal as well as lung and skin fibroblasts substantially stimulated proliferation of Caco-2, T84, and IEC-6 cells in both direct and Transwell cocultures. In addition, fibroblast-conditioned medium stimulated IEC proliferation, suggesting a paracrine mechanism. Anti-human HGF-neutralizing antibodies blocked the growth-promoting effects in both fibroblasts and fibroblast-conditioned medium. Recombinant human HGF dose dependently promoted IEC proliferation. HGF mRNA and protein expression was restricted to fibroblasts. High levels of c- met expression were found in Caco-2 and T84 cells; in contrast, expression in fibroblasts was weak. In summary, fibroblasts stimulate IEC proliferation through a paracrine mechanism mediated predominantly by HGF.
منابع مشابه
Hepatocyte Growth Factor/Scatter Factor Effects
Intestinal epithelial cells rest on a fibroblast sheath. Thus, factors produced by these fibroblasts may influence epithelial function in a paracrine fashion. We examined modulation of intestinal epithelial function by one such fibroblast product, scatter factor/ hepatocyte growth factor (HGF/SF). This effect was studied in vitro by using model T84 intestinal epithelial cells. When applied to c...
متن کاملSalidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways
Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...
متن کاملHGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity
BACKGROUND Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-in...
متن کاملEpiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage.
Epiregulin, an epidermal growth factor family member, acts as a local signal mediator and shows dual biological activity, stimulating the proliferation of fibroblasts, hepatocytes, smooth muscle cells, and keratinocytes while inhibiting the growth of several tumor-derived epithelial cell lines. The epiregulin gene (Ereg) is located on mouse chromosome 5 adjacent to three other epidermal growth ...
متن کاملAhR-E2F1-KGFR signaling is involved in KGF-induced intestinal epithelial cell proliferation
Keratinocyte growth factor (KGF) stimulates intestinal epithelial cell proliferation upon binding to the KGF receptor (KGFR). The activated aryl hydrocarbon receptor (AhR) serves an important role in the development of tissues by promoting the expression of AhR receptors, which can regulate cell proliferation. In the present study, the signaling pathway between AhR and KGFR in investigated with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 274 5 Pt 1 شماره
صفحات -
تاریخ انتشار 1998